
- C Programming Tutorial
- C - Home
- C - Overview
- C - Features
- C - History
- C - Environment Setup
- C - Program Structure
- C - Hello World
- C - Compilation Process
- C - Comments
- C - Tokens
- C - Keywords
- C - Identifiers
- C - User Input
- C - Basic Syntax
- C - Data Types
- C - Variables
- C - Integer Promotions
- C - Type Conversion
- C - Booleans
- C - Constants
- C - Literals
- C - Escape sequences
- C - Format Specifiers
- C - Storage Classes
- C - Operators
- C - Arithmetic Operators
- C - Relational Operators
- C - Logical Operators
- C - Bitwise Operators
- C - Assignment Operators
- C - Unary Operators
- C - Increment and Decrement Operators
- C - Ternary Operator
- C - sizeof Operator
- C - Operator Precedence
- C - Misc Operators
- C - Decision Making
- C - if statement
- C - if...else statement
- C - nested if statements
- C - switch statement
- C - nested switch statements
- C - Loops
- C - While loop
- C - For loop
- C - Do...while loop
- C - Nested loop
- C - Infinite loop
- C - Break Statement
- C - Continue Statement
- C - goto Statement
- C - Functions
- C - Main Functions
- C - Function call by Value
- C - Function call by reference
- C - Nested Functions
- C - Variadic Functions
- C - User-Defined Functions
- C - Callback Function
- C - Return Statement
- C - Recursion
- C - Scope Rules
- C - Static Variables
- C - Global Variables
- C - Arrays
- C - Properties of Array
- C - Multi-Dimensional Arrays
- C - Passing Arrays to Function
- C - Return Array from Function
- C - Variable Length Arrays
- C - Pointers
- C - Pointers and Arrays
- C - Applications of Pointers
- C - Pointer Arithmetics
- C - Array of Pointers
- C - Pointer to Pointer
- C - Passing Pointers to Functions
- C - Return Pointer from Functions
- C - Function Pointers
- C - Pointer to an Array
- C - Pointers to Structures
- C - Chain of Pointers
- C - Pointer vs Array
- C - Character Pointers and Functions
- C - NULL Pointer
- C - void Pointer
- C - Dangling Pointers
- C - Dereference Pointer
- C - Near, Far and Huge Pointers
- C - Initialization of Pointer Arrays
- C - Pointers vs. Multi-dimensional Arrays
- C - Strings
- C - Array of Strings
- C - Special Characters
- C - Structures
- C - Structures and Functions
- C - Arrays of Structures
- C - Self-Referential Structures
- C - Lookup Tables
- C - Dot (.) Operator
- C - Enumeration (or enum)
- C - Nested Structures
- C - Structure Padding and Packing
- C - Anonymous Structure and Union
- C - Unions
- C - Bit Fields
- C - Typedef
- C - Input & Output
- C - File I/O
- C - Preprocessors
- C - Header Files
- C - Type Casting
- C - Error Handling
- C - Variable Arguments
- C - Memory Management
- C - Command Line Arguments
- C Programming Resources
- C - Questions & Answers
- C - Quick Guide
- C - Useful Resources
- C - Discussion
C - Error Handling
As such, C programming does not provide direct support for error handling but being a system programming language, it provides you access at lower level in the form of return values. Most of the C or even Unix function calls return -1 or NULL in case of any error and set an error code errno. It is set as a global variable and indicates an error occurred during any function call. You can find various error codes defined in <error.h> header file.
So a C programmer can check the returned values and can take appropriate action depending on the return value. It is a good practice, to set errno to 0 at the time of initializing a program. A value of 0 indicates that there is no error in the program.
errno, perror(). and strerror()
The C programming language provides perror() and strerror() functions which can be used to display the text message associated with errno.
The perror() function displays the string you pass to it, followed by a colon, a space, and then the textual representation of the current errno value.
The strerror() function, which returns a pointer to the textual representation of the current errno value.
Let's try to simulate an error condition and try to open a file which does not exist. Here I'm using both the functions to show the usage, but you can use one or more ways of printing your errors. Second important point to note is that you should use stderr file stream to output all the errors.
#include <stdio.h> #include <errno.h> #include <string.h> extern int errno ; int main () { FILE * pf; int errnum; pf = fopen ("unexist.txt", "rb"); if (pf == NULL) { errnum = errno; fprintf(stderr, "Value of errno: %d\n", errno); perror("Error printed by perror"); fprintf(stderr, "Error opening file: %s\n", strerror( errnum )); } else { fclose (pf); } return 0; }
When the above code is compiled and executed, it produces the following result −
Value of errno: 2 Error printed by perror: No such file or directory Error opening file: No such file or directory
Divide by Zero Errors
It is a common problem that at the time of dividing any number, programmers do not check if a divisor is zero and finally it creates a runtime error.
The code below fixes this by checking if the divisor is zero before dividing −
#include <stdio.h> #include <stdlib.h> main() { int dividend = 20; int divisor = 0; int quotient; if( divisor == 0){ fprintf(stderr, "Division by zero! Exiting...\n"); exit(-1); } quotient = dividend / divisor; fprintf(stderr, "Value of quotient : %d\n", quotient ); exit(0); }
When the above code is compiled and executed, it produces the following result −
Division by zero! Exiting...
Program Exit Status
It is a common practice to exit with a value of EXIT_SUCCESS in case of program coming out after a successful operation. Here, EXIT_SUCCESS is a macro and it is defined as 0.
If you have an error condition in your program and you are coming out then you should exit with a status EXIT_FAILURE which is defined as -1. So let's write above program as follows −
#include <stdio.h> #include <stdlib.h> main() { int dividend = 20; int divisor = 5; int quotient; if( divisor == 0) { fprintf(stderr, "Division by zero! Exiting...\n"); exit(EXIT_FAILURE); } quotient = dividend / divisor; fprintf(stderr, "Value of quotient : %d\n", quotient ); exit(EXIT_SUCCESS); }
When the above code is compiled and executed, it produces the following result −
Value of quotient : 4
To Continue Learning Please Login