
- C Programming Tutorial
- C - Home
- C - Overview
- C - Features
- C - History
- C - Environment Setup
- C - Program Structure
- C - Hello World
- C - Compilation Process
- C - Comments
- C - Tokens
- C - Keywords
- C - Identifiers
- C - User Input
- C - Basic Syntax
- C - Data Types
- C - Variables
- C - Integer Promotions
- C - Type Conversion
- C - Booleans
- C - Constants
- C - Literals
- C - Escape sequences
- C - Format Specifiers
- C - Storage Classes
- C - Operators
- C - Arithmetic Operators
- C - Relational Operators
- C - Logical Operators
- C - Bitwise Operators
- C - Assignment Operators
- C - Unary Operators
- C - Increment and Decrement Operators
- C - Ternary Operator
- C - sizeof Operator
- C - Operator Precedence
- C - Misc Operators
- C - Decision Making
- C - if statement
- C - if...else statement
- C - nested if statements
- C - switch statement
- C - nested switch statements
- C - Loops
- C - While loop
- C - For loop
- C - Do...while loop
- C - Nested loop
- C - Infinite loop
- C - Break Statement
- C - Continue Statement
- C - goto Statement
- C - Functions
- C - Main Functions
- C - Function call by Value
- C - Function call by reference
- C - Nested Functions
- C - Variadic Functions
- C - User-Defined Functions
- C - Callback Function
- C - Return Statement
- C - Recursion
- C - Scope Rules
- C - Static Variables
- C - Global Variables
- C - Arrays
- C - Properties of Array
- C - Multi-Dimensional Arrays
- C - Passing Arrays to Function
- C - Return Array from Function
- C - Variable Length Arrays
- C - Pointers
- C - Pointers and Arrays
- C - Applications of Pointers
- C - Pointer Arithmetics
- C - Array of Pointers
- C - Pointer to Pointer
- C - Passing Pointers to Functions
- C - Return Pointer from Functions
- C - Function Pointers
- C - Pointer to an Array
- C - Pointers to Structures
- C - Chain of Pointers
- C - Pointer vs Array
- C - Character Pointers and Functions
- C - NULL Pointer
- C - void Pointer
- C - Dangling Pointers
- C - Dereference Pointer
- C - Near, Far and Huge Pointers
- C - Initialization of Pointer Arrays
- C - Pointers vs. Multi-dimensional Arrays
- C - Strings
- C - Array of Strings
- C - Special Characters
- C - Structures
- C - Structures and Functions
- C - Arrays of Structures
- C - Self-Referential Structures
- C - Lookup Tables
- C - Dot (.) Operator
- C - Enumeration (or enum)
- C - Nested Structures
- C - Structure Padding and Packing
- C - Anonymous Structure and Union
- C - Unions
- C - Bit Fields
- C - Typedef
- C - Input & Output
- C - File I/O
- C - Preprocessors
- C - Header Files
- C - Type Casting
- C - Error Handling
- C - Variable Arguments
- C - Memory Management
- C - Command Line Arguments
- C Programming Resources
- C - Questions & Answers
- C - Quick Guide
- C - Useful Resources
- C - Discussion
C - Memory Management
This chapter explains dynamic memory management in C. The C programming language provides several functions for memory allocation and management. These functions can be found in the <stdlib.h> header file.
Sr.No. | Function & Description |
---|---|
1 | void *calloc(int num, int size); This function allocates an array of num elements each of which size in bytes will be size. |
2 | void free(void *address); This function releases a block of memory block specified by address. |
3 | void *malloc(size_t size); This function allocates an array of num bytes and leave them uninitialized. |
4 | void *realloc(void *address, int newsize); This function re-allocates memory extending it upto newsize. |
Allocating Memory Dynamically
While programming, if you are aware of the size of an array, then it is easy and you can define it as an array. For example, to store a name of any person, it can go up to a maximum of 100 characters, so you can define something as follows −
char name[100];
But now let us consider a situation where you have no idea about the length of the text you need to store, for example, you want to store a detailed description about a topic. Here we need to define a pointer to character without defining how much memory is required and later, based on requirement, we can allocate memory as shown in the below example −
#include <stdio.h> #include <stdlib.h> #include <string.h> int main() { char name[100]; char *description; strcpy(name, "Zara Ali"); /* allocate memory dynamically */ description = malloc( 200 * sizeof(char) ); if( description == NULL ) { fprintf(stderr, "Error - unable to allocate required memory\n"); } else { strcpy( description, "Zara ali a DPS student in class 10th"); } printf("Name = %s\n", name ); printf("Description: %s\n", description ); }
When the above code is compiled and executed, it produces the following result.
Name = Zara Ali Description: Zara ali a DPS student in class 10th
Same program can be written using calloc(); only thing is you need to replace malloc with calloc as follows −
calloc(200, sizeof(char));
So you have complete control and you can pass any size value while allocating memory, unlike arrays where once the size defined, you cannot change it.
Resizing and Releasing Memory
When your program comes out, operating system automatically release all the memory allocated by your program but as a good practice when you are not in need of memory anymore then you should release that memory by calling the function free().
Alternatively, you can increase or decrease the size of an allocated memory block by calling the function realloc(). Let us check the above program once again and make use of realloc() and free() functions −
#include <stdio.h> #include <stdlib.h> #include <string.h> int main() { char name[100]; char *description; strcpy(name, "Zara Ali"); /* allocate memory dynamically */ description = malloc( 30 * sizeof(char) ); if( description == NULL ) { fprintf(stderr, "Error - unable to allocate required memory\n"); } else { strcpy( description, "Zara ali a DPS student."); } /* suppose you want to store bigger description */ description = realloc( description, 100 * sizeof(char) ); if( description == NULL ) { fprintf(stderr, "Error - unable to allocate required memory\n"); } else { strcat( description, "She is in class 10th"); } printf("Name = %s\n", name ); printf("Description: %s\n", description ); /* release memory using free() function */ free(description); }
When the above code is compiled and executed, it produces the following result.
Name = Zara Ali Description: Zara ali a DPS student.She is in class 10th
You can try the above example without re-allocating extra memory, and strcat() function will give an error due to lack of available memory in description.
To Continue Learning Please Login