- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion
Statistics - Interval Estimation
Interval estimation is the use of sample data to calculate an interval of possible (or probable) values of an unknown population parameter, in contrast to point estimation, which is a single number.
Formula
${\mu = \bar x \pm Z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt n}}$
Where −
${\bar x}$ = mean
${Z_{\frac{\alpha}{2}}}$ = the confidence coefficient
${\alpha}$ = confidence level
${\sigma}$ = standard deviation
${n}$ = sample size
Example
Problem Statement:
Suppose a student measuring the boiling temperature of a certain liquid observes the readings (in degrees Celsius) 102.5, 101.7, 103.1, 100.9, 100.5, and 102.2 on 6 different samples of the liquid. He calculates the sample mean to be 101.82. If he knows that the standard deviation for this procedure is 1.2 degrees, what is the interval estimation for the population mean at a 95% confidence level?
Solution:
The student calculated the sample mean of the boiling temperatures to be 101.82, with standard deviation ${\sigma = 0.49}$. The critical value for a 95% confidence interval is 1.96, where ${\frac{1-0.95}{2} = 0.025}$. A 95% confidence interval for the unknown mean.
As the level of confidence decreases, the size of the corresponding interval will decrease. Suppose the student was interested in a 90% confidence interval for the boiling temperature. In this case, ${\sigma = 0.90}$, and ${\frac{1-0.90}{2} = 0.05}$. The critical value for this level is equal to 1.645, so the 90% confidence interval is
An increase in sample size will decrease the length of the confidence interval without reducing the level of confidence. This is because the standard deviation decreases as n increases.
Margin of Error
The margin of error ${m}$ of interval estimation is defined to be the value added or subtracted from the sample mean which determines the length of the interval:
${Z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt n}}$
Suppose in the example above, the student wishes to have a margin of error equal to 0.5 with 95% confidence. Substituting the appropriate values into the expression for ${m}$ and solving for n gives the calculation.
To achieve 95% interval estimation for the mean boiling point with total length less than 1 degree, the student will have to take 23 measurements.
To Continue Learning Please Login
Login with Google