Java Tutorial
- Java - Home
- Java - Overview
- Java - History
- Java - Features
- Java vs C++
- Java Virtual Machine(JVM)
- Java - JDK vs JRE vs JVM
- Java - Hello World Program
- Java - Environment Setup
- Java - Basic Syntax
- Java - Variable Types
- Java - Data Types
- Java - Type Casting
- Java - Unicode System
- Java - Basic Operators
- Java - Comments
- Java - User Input
Java Control Statements
- Java - Loop Control
- Java - Decision Making
- Java - If-else
- Java - Switch
- Java - For Loops
- Java - For-Each Loops
- Java - While Loops
- Java - do-while Loops
- Java - Break
- Java - Continue
Object Oriented Programming
- Java - OOPs Concepts
- Java - Object & Classes
- Java - Class Attributes
- Java - Class Methods
- Java - Methods
- Java - Variables Scope
- Java - Constructors
- Java - Access Modifiers
- Java - Inheritance
- Java - Aggregation
- Java - Polymorphism
- Java - Overriding
- Java - Method Overloading
- Java - Dynamic Binding
- Java - Static Binding
- Java - Instance Initializer Block
- Java - Abstraction
- Java - Encapsulation
- Java - Interfaces
- Java - Packages
- Java - Inner Classes
- Java - Static Class
- Java - Anonymous Class
- Java - Singleton Class
- Java - Wrapper Classes
- Java - Enums
- Java - Enum Constructor
- Java - Enum Strings
Java Built-in Classes
- Java - Number
- Java - Boolean
- Java - Characters
- Java - Strings
- Java - Arrays
- Java - Date & Time
- Java - Math Class
Java File Handling
- Java - Files
- Java - Create a File
- Java - Write to File
- Java - Read Files
- Java - Delete Files
- Java - Directories
- Java - I/O Streams
Java Error & Exceptions
- Java - Exceptions
- Java - try-catch Block
- Java - try-with-resources
- Java - Multi-catch Block
- Java - Nested try Block
- Java - Finally Block
- Java - throw Exception
- Java - Exception Propagation
- Java - Built-in Exceptions
- Java - Custom Exception
Java Multithreading
- Java - Multithreading
- Java - Thread Life Cycle
- Java - Creating a Thread
- Java - Starting a Thread
- Java - Joining Threads
- Java - Naming Thread
- Java - Thread Scheduler
- Java - Thread Pools
- Java - Main Thread
- Java - Thread Priority
- Java - Daemon Threads
- Java - Thread Group
- Java - Shutdown Hook
Java Synchronization
- Java - Synchronization
- Java - Block Synchronization
- Java - Static Synchronization
- Java - Inter-thread Communication
- Java - Thread Deadlock
- Java - Interrupting a Thread
- Java - Thread Control
- Java - Reentrant Monitor
Java Networking
- Java - Networking
- Java - Socket Programming
- Java - URL Processing
- Java - URL Class
- Java - URLConnection Class
- Java - HttpURLConnection Class
- Java - Socket Class
- Java - Generics
Java Collections
Java List Interface
Java Queue Interface
Java Map Interface
- Java - Map Interface
- Java - HashMap
- Java - LinkedHashMap
- Java - WeakHashMap
- Java - EnumMap
- Java - SortedMap Interface
- Java - TreeMap
- Java - The IdentityHashMap Class
Java Set Interface
- Java - Set Interface
- Java - HashSet
- Java - EnumSet
- Java - LinkedHashSet
- Java - SortedSet Interface
- Java - TreeSet
Java Data Structures
- Java - Data Structures
- Java - Enumeration
- Java - BitSet Class
- Java - Dictionary
- Java - Hashtable
- Java - Properties
Java Collections Algorithms
Advanced Java
- Java - Command-Line Arguments
- Java - Lambda Expressions
- Java - Sending Email
- Java - Applet Basics
- Java - Javadoc Comments
- Java - Autoboxing and Unboxing
- Java - File Mismatch Method
- Java - REPL (JShell)
- Java - Multi-Release Jar Files
- Java - Private Interface Methods
- Java - Inner Class Diamond Operator
- Java - Multiresolution Image API
- Java - Collection Factory Methods
- Java - Module System
- Java - Nashorn JavaScript
- Java - Optional Class
- Java - Method References
- Java - Functional Interfaces
- Java - Default Methods
- Java - Base64 Encode Decode
- Java - Switch Expressions
- Java - Teeing Collectors
- Java - Microbenchmark
- Java - Text Blocks
- Java - Null Pointer Exception
- Java - Packaging Tools
- Java - Sealed Classes
- Java - Record Classes
- Java - Hidden Classes
- Java - Compact Number Formatting
Java Miscellaneous
- Java - Recursion
- Java - Regular Expressions
- Java - Serialization
- Java - Strings
- Java - Process API Improvements
- Java - Stream API Improvements
- Java - Enhanced @Deprecated Annotation
- Java - CompletableFuture API Improvements
- Java - Array Methods
- Java - Streams
- Java - Datetime Api
- Java 8 - New Features
- Java 9 - New Features
Java APIs & Frameworks
Java Useful Resources
Java - Inheritance
Java Inheritance
In Java programming, the inheritance is an important of concept of Java OOPs. Inheritance is a process where one class acquires the properties (methods and attributes) of another. With the use of inheritance, the information is made manageable in a hierarchical order.
The class which inherits the properties of other is known as subclass (derived class, child class) and the class whose properties are inherited is known as superclass (base class, parent class).
Need of Java Inheritance
- Code Reusability: The basic need of an inheritance is to reuse the features. If you have defined some functionality once, by using the inheritance you can easily use them in other classes and packages.
- Extensibility: The inheritance helps to extend the functionalities of a class. If you have a base class with some functionalities, you can extend them by using the inheritance in the derived class.
- Implantation of Method Overriding: Inheritance is required to achieve one of the concepts of Polymorphism which is Method overriding.
- Achieving Abstraction: Another concept of OOPs that is abstraction also needs inheritance.
Implementation of Java Inheritance
To implement (use) inheritance in Java, the extends keyword is used. It inherits the properties (attributes or/and methods) of the base class to the derived class. The word "extends" means to extend functionalities i.e., the extensibility of the features.
Syntax to implement inheritance
Consider the below syntax to implement (use) inheritance in Java:
class Super { ..... ..... } class Sub extends Super { ..... ..... }
Java Inheritance Example
Following is an example demonstrating Java inheritance. In this example, you can observe two classes namely Calculation and My_Calculation.
Using extends keyword, the My_Calculation inherits the methods addition() and Subtraction() of Calculation class.
Copy and paste the following program in a file with name My_Calculation.java
Java Program to Implement Inheritance
class Calculation { int z; public void addition(int x, int y) { z = x + y; System.out.println("The sum of the given numbers:"+z); } public void Subtraction(int x, int y) { z = x - y; System.out.println("The difference between the given numbers:"+z); } } public class My_Calculation extends Calculation { public void multiplication(int x, int y) { z = x * y; System.out.println("The product of the given numbers:"+z); } public static void main(String args[]) { int a = 20, b = 10; My_Calculation demo = new My_Calculation(); demo.addition(a, b); demo.Subtraction(a, b); demo.multiplication(a, b); } }
Compile and execute the above code as shown below.
javac My_Calculation.java java My_Calculation
After executing the program, it will produce the following result −
Output
The sum of the given numbers:30 The difference between the given numbers:10 The product of the given numbers:200
In the given program, when an object to My_Calculation class is created, a copy of the contents of the superclass is made within it. That is why, using the object of the subclass you can access the members of a superclass.
The Superclass reference variable can hold the subclass object, but using that variable you can access only the members of the superclass, so to access the members of both classes it is recommended to always create reference variable to the subclass.
If you consider the above program, you can instantiate the class as given below. But using the superclass reference variable ( cal in this case) you cannot call the method multiplication(), which belongs to the subclass My_Calculation.
Calculation demo = new My_Calculation(); demo.addition(a, b); demo.Subtraction(a, b);
Note − A subclass inherits all the members (fields, methods, and nested classes) from its superclass. Constructors are not members, so they are not inherited by subclasses, but the constructor of the superclass can be invoked from the subclass.
Java Inheritance: The super Keyword
The super keyword is similar to this keyword. Following are the scenarios where the super keyword is used.
It is used to differentiate the members of superclass from the members of subclass, if they have same names.
It is used to invoke the superclass constructor from subclass.
Differentiating the Members
If a class is inheriting the properties of another class. And if the members of the superclass have the names same as the sub class, to differentiate these variables we use super keyword as shown below.
super.variable super.method();
Sample Code
This section provides you a program that demonstrates the usage of the super keyword.
In the given program, you have two classes namely Sub_class and Super_class, both have a method named display() with different implementations, and a variable named num with different values. We are invoking display() method of both classes and printing the value of the variable num of both classes. Here you can observe that we have used super keyword to differentiate the members of superclass from subclass.
Copy and paste the program in a file with name Sub_class.java.
Example
class Super_class { int num = 20; // display method of superclass public void display() { System.out.println("This is the display method of superclass"); } } public class Sub_class extends Super_class { int num = 10; // display method of sub class public void display() { System.out.println("This is the display method of subclass"); } public void my_method() { // Instantiating subclass Sub_class sub = new Sub_class(); // Invoking the display() method of sub class sub.display(); // Invoking the display() method of superclass super.display(); // printing the value of variable num of subclass System.out.println("value of the variable named num in sub class:"+ sub.num); // printing the value of variable num of superclass System.out.println("value of the variable named num in super class:"+ super.num); } public static void main(String args[]) { Sub_class obj = new Sub_class(); obj.my_method(); } }
Compile and execute the above code using the following syntax.
javac Super_Demo java Super
On executing the program, you will get the following result −
Output
This is the display method of subclass This is the display method of superclass value of the variable named num in sub class:10 value of the variable named num in super class:20
Invoking Superclass Constructor
If a class is inheriting the properties of another class, the subclass automatically acquires the default constructor of the superclass. But if you want to call a parameterized constructor of the superclass, you need to use the super keyword as shown below.
super(values);
Sample Code
The program given in this section demonstrates how to use the super keyword to invoke the parametrized constructor of the superclass. This program contains a superclass and a subclass, where the superclass contains a parameterized constructor which accepts a integer value, and we used the super keyword to invoke the parameterized constructor of the superclass.
Copy and paste the following program in a file with the name Subclass.java
Example
class Superclass { int age; Superclass(int age) { this.age = age; } public void getAge() { System.out.println("The value of the variable named age in super class is: " +age); } } public class Subclass extends Superclass { Subclass(int age) { super(age); } public static void main(String args[]) { Subclass s = new Subclass(24); s.getAge(); } }
Compile and execute the above code using the following syntax.
javac Subclass java Subclass
Output
The value of the variable named age in super class is: 24
IS-A Relationship
IS-A is a way of saying: This object is a type of that object. Let us see how the extends keyword is used to achieve inheritance.
public class Animal { } public class Mammal extends Animal { } public class Reptile extends Animal { } public class Dog extends Mammal { }
Now, based on the above example, in Object-Oriented terms, the following are true −
- Animal is the superclass of Mammal class.
- Animal is the superclass of Reptile class.
- Mammal and Reptile are subclasses of Animal class.
- Dog is the subclass of both Mammal and Animal classes.
Now, if we consider the IS-A relationship, we can say −
- Mammal IS-A Animal
- Reptile IS-A Animal
- Dog IS-A Mammal
- Hence: Dog IS-A Animal as well
With the use of the extends keyword, the subclasses will be able to inherit all the properties of the superclass except for the private properties of the superclass.
We can assure that Mammal is actually an Animal with the use of the instance operator.
Example
class Animal { } class Mammal extends Animal { } class Reptile extends Animal { } public class Dog extends Mammal { public static void main(String args[]) { Animal a = new Animal(); Mammal m = new Mammal(); Dog d = new Dog(); System.out.println(m instanceof Animal); System.out.println(d instanceof Mammal); System.out.println(d instanceof Animal); } }
Output
true true true
Since we have a good understanding of the extends keyword, let us look into how the implements keyword is used to get the IS-A relationship.
Generally, the implements keyword is used with classes to inherit the properties of an interface. Interfaces can never be extended by a class.
Example
public interface Animal { } public class Mammal implements Animal { } public class Dog extends Mammal { }
Java Inheritance: The instanceof Keyword
Let us use the instanceof operator to check determine whether Mammal is actually an Animal, and dog is actually an Animal.
Example
interface Animal{} class Mammal implements Animal{} public class Dog extends Mammal { public static void main(String args[]) { Mammal m = new Mammal(); Dog d = new Dog(); System.out.println(m instanceof Animal); System.out.println(d instanceof Mammal); System.out.println(d instanceof Animal); } }
Output
true true true
HAS-A relationship
These relationships are mainly based on the usage. This determines whether a certain class HAS-A certain thing. This relationship helps to reduce duplication of code as well as bugs.
Lets look into an example −
Example
public class Vehicle{} public class Speed{} public class Van extends Vehicle { private Speed sp; }
This shows that class Van HAS-A Speed. By having a separate class for Speed, we do not have to put the entire code that belongs to speed inside the Van class, which makes it possible to reuse the Speed class in multiple applications.
In Object-Oriented feature, the users do not need to bother about which object is doing the real work. To achieve this, the Van class hides the implementation details from the users of the Van class. So, basically what happens is the users would ask the Van class to do a certain action and the Van class will either do the work by itself or ask another class to perform the action.
Types of Java Inheritance
In Java, there are mainly three types of inheritances Single, Multilevel, and Hierarchical. Java does not support Multiple and Hybrid inheritance.
A very important fact to remember is that Java does not support multiple and hybrid inheritances. This means that a class cannot extend more than one class. Therefore following is illegal −
1. Java Single Inheritance
The inheritance in which there is only one base class and one derived class is known as single inheritance. The single (or, single-level) inheritance inherits data from only one base class to only one derived class.
Example of Java Single Inheritance
class One { public void printOne() { System.out.println("printOne() method of One class."); } } public class Main extends One { public static void main(String args[]) { // Creating object of the derived class (Main) Main obj = new Main(); // Calling method obj.printOne(); } }
Output
printOne() method of One class.
2. Java Multilevel Inheritance
The inheritance in which a base class is inherited to a derived class and that derived class is further inherited to another derived class is known as multi-level inheritance. Multilevel inheritance involves multiple base classes.
Example of Java Multilevel Inheritance
class One { public void printOne() { System.out.println("printOne() method of One class."); } } class Two extends One { public void printTwo() { System.out.println("printTwo() method of Two class."); } } public class Main extends Two { public static void main(String args[]) { // Creating object of the derived class (Main) Main obj = new Main(); // Calling methods obj.printOne(); obj.printTwo(); } }
Output
printOne() method of One class. printTwo() method of Two class.
3. Java Hierarchical Inheritance
The inheritance in which only one base class and multiple derived classes is known as hierarchical inheritance.
Example of Java Hierarchical Inheritance
// Base class class One { public void printOne() { System.out.println("printOne() Method of Class One"); } } // Derived class 1 class Two extends One { public void printTwo() { System.out.println("Two() Method of Class Two"); } } // Derived class 2 class Three extends One { public void printThree() { System.out.println("printThree() Method of Class Three"); } } // Testing CLass public class Main { public static void main(String args[]) { Two obj1 = new Two(); Three obj2 = new Three(); //All classes can access the method of class One obj1.printOne(); obj2.printOne(); } }
Output
printOne() Method of Class One printOne() Method of Class One
Example
public class extends Animal, Mammal{}
However, a class can implement one or more interfaces, which has helped Java get rid of the impossibility of multiple inheritance.
To Continue Learning Please Login
Login with Google