- Machine Learning Basics
- Machine Learning - Home
- Machine Learning - Getting Started
- Machine Learning - Basic Concepts
- Machine Learning - Python Libraries
- Machine Learning - Applications
- Machine Learning - Life Cycle
- Machine Learning - Required Skills
- Machine Learning - Implementation
- Machine Learning - Challenges & Common Issues
- Machine Learning - Limitations
- Machine Learning - Reallife Examples
- Machine Learning - Data Structure
- Machine Learning - Mathematics
- Machine Learning - Artificial Intelligence
- Machine Learning - Neural Networks
- Machine Learning - Deep Learning
- Machine Learning - Getting Datasets
- Machine Learning - Categorical Data
- Machine Learning - Data Loading
- Machine Learning - Data Understanding
- Machine Learning - Data Preparation
- Machine Learning - Models
- Machine Learning - Supervised
- Machine Learning - Unsupervised
- Machine Learning - Semi-supervised
- Machine Learning - Reinforcement
- Machine Learning - Supervised vs. Unsupervised
- Machine Learning Data Visualization
- Machine Learning - Data Visualization
- Machine Learning - Histograms
- Machine Learning - Density Plots
- Machine Learning - Box and Whisker Plots
- Machine Learning - Correlation Matrix Plots
- Machine Learning - Scatter Matrix Plots
- Statistics for Machine Learning
- Machine Learning - Statistics
- Machine Learning - Mean, Median, Mode
- Machine Learning - Standard Deviation
- Machine Learning - Percentiles
- Machine Learning - Data Distribution
- Machine Learning - Skewness and Kurtosis
- Machine Learning - Bias and Variance
- Machine Learning - Hypothesis
- Regression Analysis In ML
- Machine Learning - Regression Analysis
- Machine Learning - Linear Regression
- Machine Learning - Simple Linear Regression
- Machine Learning - Multiple Linear Regression
- Machine Learning - Polynomial Regression
- Classification Algorithms In ML
- Machine Learning - Classification Algorithms
- Machine Learning - Logistic Regression
- Machine Learning - K-Nearest Neighbors (KNN)
- Machine Learning - Naïve Bayes Algorithm
- Machine Learning - Decision Tree Algorithm
- Machine Learning - Support Vector Machine
- Machine Learning - Random Forest
- Machine Learning - Confusion Matrix
- Machine Learning - Stochastic Gradient Descent
- Clustering Algorithms In ML
- Machine Learning - Clustering Algorithms
- Machine Learning - Centroid-Based Clustering
- Machine Learning - K-Means Clustering
- Machine Learning - K-Medoids Clustering
- Machine Learning - Mean-Shift Clustering
- Machine Learning - Hierarchical Clustering
- Machine Learning - Density-Based Clustering
- Machine Learning - DBSCAN Clustering
- Machine Learning - OPTICS Clustering
- Machine Learning - HDBSCAN Clustering
- Machine Learning - BIRCH Clustering
- Machine Learning - Affinity Propagation
- Machine Learning - Distribution-Based Clustering
- Machine Learning - Agglomerative Clustering
- Dimensionality Reduction In ML
- Machine Learning - Dimensionality Reduction
- Machine Learning - Feature Selection
- Machine Learning - Feature Extraction
- Machine Learning - Backward Elimination
- Machine Learning - Forward Feature Construction
- Machine Learning - High Correlation Filter
- Machine Learning - Low Variance Filter
- Machine Learning - Missing Values Ratio
- Machine Learning - Principal Component Analysis
- Machine Learning Miscellaneous
- Machine Learning - Performance Metrics
- Machine Learning - Automatic Workflows
- Machine Learning - Boost Model Performance
- Machine Learning - Gradient Boosting
- Machine Learning - Bootstrap Aggregation (Bagging)
- Machine Learning - Cross Validation
- Machine Learning - AUC-ROC Curve
- Machine Learning - Grid Search
- Machine Learning - Data Scaling
- Machine Learning - Train and Test
- Machine Learning - Association Rules
- Machine Learning - Apriori Algorithm
- Machine Learning - Gaussian Discriminant Analysis
- Machine Learning - Cost Function
- Machine Learning - Bayes Theorem
- Machine Learning - Precision and Recall
- Machine Learning - Adversarial
- Machine Learning - Stacking
- Machine Learning - Epoch
- Machine Learning - Perceptron
- Machine Learning - Regularization
- Machine Learning - Overfitting
- Machine Learning - P-value
- Machine Learning - Entropy
- Machine Learning - MLOps
- Machine Learning - Data Leakage
- Machine Learning - Resources
- Machine Learning - Quick Guide
- Machine Learning - Useful Resources
- Machine Learning - Discussion
Machine Learning - Data Scaling
Data scaling is a pre-processing technique used in Machine Learning to normalize or standardize the range or distribution of features in the data. Data scaling is essential because the different features in the data may have different scales, and some algorithms may not work well with such data. By scaling the data, we can ensure that each feature has a similar scale and range, which can improve the performance of the machine learning model.
There are two common techniques used for data scaling −
Normalization − Normalization scales the values of a feature between 0 and 1. This is achieved by subtracting the minimum value of the feature from each value and dividing it by the range of the feature (the difference between the maximum and minimum values).
Standardization − Standardization scales the values of a feature to have a mean of 0 and a standard deviation of 1. This is achieved by subtracting the mean of the feature from each value and dividing it by the standard deviation.
Example
In Python, data scaling can be implemented using the sklearn module. The sklearn.preprocessing sub-module provides classes for scaling data. Below is an example implementation of data scaling in Python using the StandardScaler class for standardization −
from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris import pandas as pd # Load the iris dataset data = load_iris() X = data.data y = data.target # Create a DataFrame from the dataset df = pd.DataFrame(X, columns=data.feature_names) print("Before scaling:") print(df.head()) # Scale the data using StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Create a new DataFrame from the scaled data df_scaled = pd.DataFrame(X_scaled, columns=data.feature_names) print("After scaling:") print(df_scaled.head())
In this example, we load the iris dataset and create a DataFrame from it. We then use the StandardScaler class to scale the data and create a new DataFrame from the scaled data. Finally, we print the dataframes to see the difference in the data before and after scaling. Note that we fit and transform the data using the fit_transform() method of the scaler object.
Output
When you execute this code, it will produce the following output −
Before scaling: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) 0 5.1 3.5 1.4 0.2 1 4.9 3.0 1.4 0.2 2 4.7 3.2 1.3 0.2 3 4.6 3.1 1.5 0.2 4 5.0 3.6 1.4 0.2 After scaling: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) 0 -0.900681 1.019004 -1.340227 -1.315444 1 -1.143017 -0.131979 -1.340227 -1.315444 2 -1.385353 0.328414 -1.397064 -1.315444 3 -1.506521 0.098217 -1.283389 -1.315444 4 -1.021849 1.249201 -1.340227 -1.315444
To Continue Learning Please Login
Login with Google