- Matplotlib Basics
- Matplotlib - Home
- Matplotlib - Introduction
- Matplotlib - Vs Seaborn
- Matplotlib - Environment Setup
- Matplotlib - Anaconda distribution
- Matplotlib - Jupyter Notebook
- Matplotlib - Pyplot API
- Matplotlib - Simple Plot
- Matplotlib - Saving Figures
- Matplotlib - Markers
- Matplotlib - Figures
- Matplotlib - Styles
- Matplotlib - Legends
- Matplotlib - Colors
- Matplotlib - Colormaps
- Matplotlib - Colormap Normalization
- Matplotlib - Choosing Colormaps
- Matplotlib - Colorbars
- Matplotlib - Text
- Matplotlib - Text properties
- Matplotlib - Subplot Titles
- Matplotlib - Images
- Matplotlib - Image Masking
- Matplotlib - Annotations
- Matplotlib - Arrows
- Matplotlib - Fonts
- Matplotlib - What are Fonts?
- Setting Font Properties Globally
- Matplotlib - Font Indexing
- Matplotlib - Font Properties
- Matplotlib - Scales
- Matplotlib - Linear and Logarthmic Scales
- Matplotlib - Symmetrical Logarithmic and Logit Scales
- Matplotlib - LaTeX
- Matplotlib - What is LaTeX?
- Matplotlib - LaTeX for Mathematical Expressions
- Matplotlib - LaTeX Text Formatting in Annotations
- Matplotlib - PostScript
- Enabling LaTex Rendering in Annotations
- Matplotlib - Mathematical Expressions
- Matplotlib - Animations
- Matplotlib - Artists
- Matplotlib - Styling with Cycler
- Matplotlib - Paths
- Matplotlib - Path Effects
- Matplotlib - Transforms
- Matplotlib - Ticks and Tick Labels
- Matplotlib - Radian Ticks
- Matplotlib - Dateticks
- Matplotlib - Tick Formatters
- Matplotlib - Tick Locators
- Matplotlib - Axis Ranges
- Matplotlib - Axis Scales
- Matplotlib - Axis Ticks
- Matplotlib - Formatting Axes
- Matplotlib - Axes Class
- Matplotlib - Twin Axes
- Matplotlib - Figure Class
- Matplotlib - Multiplots
- Matplotlib - Grids
- Matplotlib - Object-oriented Interface
- Matplotlib - PyLab module
- Matplotlib - Subplots() Function
- Matplotlib - Subplot2grid() Function
- Matplotlib - Anchored Artists
- Matplotlib - Manual Contour
- Matplotlib - Coords Report
- Matplotlib - AGG filter
- Matplotlib - Ribbon Box
- Matplotlib - Fill Spiral
- Matplotlib - Findobj Demo
- Matplotlib - Hyperlinks
- Matplotlib - Image Thumbnail
- Matplotlib - Plotting with Keywords
- Matplotlib - Create Logo
- Matplotlib - Multipage PDF
- Matplotlib - Multiprocessing
- Matplotlib - Print Stdout
- Matplotlib - Compound Path
- Matplotlib - Sankey Class
- Matplotlib - MRI with EEG
- Matplotlib - Stylesheets
- Matplotlib - Background Colors
- Matplotlib - Basemap
- Matplotlib Event Handling
- Matplotlib - Event Handling
- Matplotlib - Close Event
- Matplotlib - Mouse Move
- Matplotlib - Click Events
- Matplotlib - Scroll Event
- Matplotlib - Keypress Event
- Matplotlib - Pick Event
- Matplotlib - Looking Glass
- Matplotlib - Path Editor
- Matplotlib - Poly Editor
- Matplotlib - Timers
- Matplotlib - Viewlims
- Matplotlib - Zoom Window
- Matplotlib Plotting
- Matplotlib - Bar Graphs
- Matplotlib - Histogram
- Matplotlib - Pie Chart
- Matplotlib - Scatter Plot
- Matplotlib - Box Plot
- Matplotlib - Violin Plot
- Matplotlib - Contour Plot
- Matplotlib - 3D Plotting
- Matplotlib - 3D Contours
- Matplotlib - 3D Wireframe Plot
- Matplotlib - 3D Surface Plot
- Matplotlib - Quiver Plot
- Matplotlib Useful Resources
- Matplotlib - Quick Guide
- Matplotlib - Useful Resources
- Matplotlib - Discussion
Matplotlib - Animations
Animation is a visual technique that involves the creation of moving images through a sequence of individual frames. Each frame represents a specific moment in time, and when played consecutively at a high speed, they create the illusion of movement. For instance, a common example of an animated object is a GIF. Here is an example −
The popular file formats of animations are GIFs, APNG (Animated Portable Network Graphics), mkv, mp4, and more.
Animations in Matplotlib
Matplotlib provides a dedicated module for creating animations. In this context, an animation is a series of frames, and each frame is associated with a plot on a Figure.
To integrate the animation capabilities into our working environment we can import the dedicated module by using the following command −
import matplotlib.animation as animation
Creating Animations
Creating animations in Matplotlib can be done through two different approaches. The matplotlib.animation module provides two primary classes for this purpose −
- FuncAnimation
- ArtistAnimation
The FuncAnimation class
The approach of Using the FuncAnimation class is an efficient way to create animations by modifying the data of a plot for each frame. It allows us to create an animation by passing a user-defined function that iteratively modifies the data of a plot. This class involves generating data for the initial frame and subsequently modifying this data for each subsequent frame.
Example
This example demonstrates the use of FuncAnimation class to animate a sine wave plot, illustrating the motion of the object. And it is also updates the X-axis values using Matplotlib animation.
import matplotlib.pyplot as plt import numpy as np import matplotlib.animation as animation # Creating a figure and axis fig, ax = plt.subplots(figsize=(7, 4)) # Generating x values x = np.arange(0, 2*np.pi, 0.01) # Plotting the initial sine curve line, = ax.plot(x, np.sin(x)) ax.legend([r'$\sin(x)$']) # Function to update the plot for each frame of the animation def update(frame): line.set_ydata(np.sin(x + frame / 50)) ax.set_xlim(left=0, right=frame) return line # Creating a FuncAnimation object ani = animation.FuncAnimation(fig=fig, func=update, frames=40, interval=30) # Displaying the output plt.show()
Output
The above example produces the following output −
Example
Here is another example that creates an animated 3D surface plot using FuncAnimation class.
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # Generate data N = 50 fps = 250 frn = 75 x = np.linspace(-2, 2, N + 1) x, y = np.meshgrid(x, x) zarray = np.zeros((N + 1, N + 1, frn)) f = lambda x, y, sig: 1 / np.sqrt(sig) * np.exp(-(x ** 2 + y ** 2) / sig ** 2) # Create data array for i in range(frn): zarray[:, :, i] = f(x, y, 1.5 + np.sin(i * 2 * np.pi / frn)) # Update plot function def change_plot(frame_number, zarray, plot): plot[0].remove() plot[0] = ax.plot_surface(x, y, zarray[:, :, frame_number], cmap="afmhot_r") # Create figure and subplot fig = plt.figure(figsize=(7, 4)) ax = fig.add_subplot(111, projection='3d') # Initial plot plot = [ax.plot_surface(x, y, zarray[:, :, 0], color='0.75', rstride=1, cstride=1)] # Set axis limits ax.set_zlim(0, 1.1) # Animation ani = animation.FuncAnimation(fig, change_plot, frn, fargs=(zarray, plot), interval=1000 / fps) # Turn off axis and grid ax.axis('off') ax.grid(False) # Show plot plt.show()
Output
The above example produces the following output −
ArtistAnimation
ArtistAnimation is a flexible approach suitable for scenarios where different artists need to be animated in a sequence. This approach involves generating a list (iterable) of artists to draw them into each frame of the animation.
Example
This example demonstrates the using of ArtistAnimation class to create the animation.
import matplotlib.pyplot as plt import numpy as np import matplotlib.animation as animation # Create a figure and axis fig, ax = plt.subplots(figsize=(7,4)) # Define the function def f(x, y): return np.sin(x) + np.cos(y) # Generate x and y values for the function x = np.linspace(0, 2 * np.pi, 180) y = np.linspace(0, 2 * np.pi, 100).reshape(-1, 1) # ims is a list of lists, each row is a list of artists to draw in the current frame ims = [] # Generate frames for the animation for i in range(60): x += np.pi / 10 y += np.pi / 30 im = ax.imshow(f(x, y), animated=True) if i == 0: ax.imshow(f(x, y)) # show an initial one first ims.append([im]) # Create an ArtistAnimation with the specified interval, blit, and repeat_delay ani = animation.ArtistAnimation(fig, ims, interval=50, blit=True, repeat_delay=1000) # Display the animation plt.show()
Output
The above code generates the following results −
Saving animations
Saving animation objects to disk is possible using different multimedia writers, such as Pillow, ffmpeg, and imagemagick. However, it's important to note that not all video formats are supported by every writer. There are four primary types of writers:
- PillowWriter
- HTMLWriter
- Pipe-based writers
- File-based writers
PillowWriter
It uses the Pillow library to save animations in various formats, such as GIF, APNG, and WebP.
Example
An example demonstrates animating a scatterplot and saving that as a GIF using the PillowWriter.
import matplotlib.pyplot as plt import matplotlib.animation as animation import numpy as np # Generate data steps = 50 nodes = 100 positions = [] solutions = [] for i in range(steps): positions.append(np.random.rand(2, nodes)) solutions.append(np.random.random(nodes)) # Create a figure and axes fig, ax = plt.subplots(figsize=(7, 4)) marker_size = 50 # Function to update the plot for each frame of the animation def animate(i): fig.clear() ax = fig.add_subplot(111, aspect='equal', autoscale_on=False, xlim=(0, 1), ylim=(0, 1)) ax.set_xlim(0, 1) ax.set_ylim(0, 1) s = ax.scatter(positions[i][0], positions[i][1], s=marker_size, c=solutions[i], cmap="RdBu_r", marker="o", edgecolor='black') plt.grid(None) # Creating a FuncAnimation object ani = animation.FuncAnimation(fig, animate, interval=100, frames=range(steps)) # Save the animation as a GIF using the PillowWriter ani.save('animation.gif', writer='pillow')
If you visit the folder where the output is saved you can observe below gif file −
Output
HTMLWriter
HTMLWriter is used for creating JavaScript-based animations, supporting HTML and PNG formats. This writer is useful for embedding animations in web pages.
Pipe-based writers
These writers use external utilities like FFMpegWriter and ImageMagickWriter to create animations. They support various video formats and frames are piped to the utility, which stitches them together to create the animation.
File-based writers
File-based writers (FFMpegFileWriter and ImageMagickFileWriter) are slightly slower but offer the advantage of saving each frame before creating the final animation.
Example
The following example shows how to properly enable ffmpeg for matplotlib.animation. Here the plot is created with an animated image matrix and the animated colorbar.
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from mpl_toolkits.axes_grid1 import make_axes_locatable plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True plt.rcParams['animation.ffmpeg_path'] = 'ffmpeg' fig = plt.figure() ax = fig.add_subplot(111) div = make_axes_locatable(ax) cax = div.append_axes('right', '5%', '5%') data = np.random.rand(5, 5) im = ax.imshow(data) cb = fig.colorbar(im, cax=cax) tx = ax.set_title('Frame 0') cmap = ["copper", 'RdBu_r', 'Oranges', 'cividis', 'hot', 'plasma'] def animate(i): cax.cla() data = np.random.rand(5, 5) im = ax.imshow(data, cmap=cmap[i%len(cmap)]) fig.colorbar(im, cax=cax) tx.set_text('Frame {0}'.format(i)) ani = animation.FuncAnimation(fig, animate, frames=10) FFwriter = animation.FFMpegWriter() ani.save('plot.mp4', writer=FFwriter)
Output
On executing the above code you will get the following output −
To Continue Learning Please Login
Login with Google