- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion
Statistics - Quadratic Regression Equation
Quadratic regression is deployed to figure out an equation of the parabola which can best fit the given set of data. It is of following form:
${ y = ax^2 + bx + c \ where \ a \ne 0}$
Least square method can be used to find out the Quadratic Regression Equation. In this method, we find out the value of a, b and c so that squared vertical distance between each given point (${x_i, y_i}$) and the parabola equation (${ y = ax^2 + bx + c}$) is minimal. The matrix equation for the parabolic curve is given by:
Correlation Coefficient, r
Correlation coefficient, r determines how good a quardratic equation can fit the given data. If r is close to 1 then it is good fit. r can be computed by following formula.
${ r = 1 - \frac{SSE}{SST} \ where \\[7pt] \ SSE = \sum (y_i - a{x_i}^2 - bx_i - c)^2 \\[7pt] \ SST = \sum (y_i - \bar y)^2 }$
Generally, quadratic regression calculators are used to compute the quadratic regression equation.
Example
Problem Statement:
Compute the quadratic regression equation of following data. Check its best fitness.
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
y | 7.5 | 3 | 0.5 | 1 | 3 | 6 | 14 |
Solution:
Compute a quadratic regression on calculator by putting the x and y values. The best fit quadratic equation for above points comes as
${ y = 1.1071x^2 + x + 0.5714 }$
To check the best fitness, plot the graph.
So the value of Correlation Coefficient, r for the data is 0.99420 and is close to 1. Hence quadratic regression equation is best fit.
To Continue Learning Please Login
Login with Google