- Statistics Tutorial
- Home
- Adjusted R-Squared
- Analysis of Variance
- Arithmetic Mean
- Arithmetic Median
- Arithmetic Mode
- Arithmetic Range
- Bar Graph
- Best Point Estimation
- Beta Distribution
- Binomial Distribution
- Black-Scholes model
- Boxplots
- Central limit theorem
- Chebyshev's Theorem
- Chi-squared Distribution
- Chi Squared table
- Circular Permutation
- Cluster sampling
- Cohen's kappa coefficient
- Combination
- Combination with replacement
- Comparing plots
- Continuous Uniform Distribution
- Continuous Series Arithmetic Mean
- Continuous Series Arithmetic Median
- Continuous Series Arithmetic Mode
- Cumulative Frequency
- Co-efficient of Variation
- Correlation Co-efficient
- Cumulative plots
- Cumulative Poisson Distribution
- Data collection
- Data collection - Questionaire Designing
- Data collection - Observation
- Data collection - Case Study Method
- Data Patterns
- Deciles Statistics
- Discrete Series Arithmetic Mean
- Discrete Series Arithmetic Median
- Discrete Series Arithmetic Mode
- Dot Plot
- Exponential distribution
- F distribution
- F Test Table
- Factorial
- Frequency Distribution
- Gamma Distribution
- Geometric Mean
- Geometric Probability Distribution
- Goodness of Fit
- Grand Mean
- Gumbel Distribution
- Harmonic Mean
- Harmonic Number
- Harmonic Resonance Frequency
- Histograms
- Hypergeometric Distribution
- Hypothesis testing
- Individual Series Arithmetic Mean
- Individual Series Arithmetic Median
- Individual Series Arithmetic Mode
- Interval Estimation
- Inverse Gamma Distribution
- Kolmogorov Smirnov Test
- Kurtosis
- Laplace Distribution
- Linear regression
- Log Gamma Distribution
- Logistic Regression
- Mcnemar Test
- Mean Deviation
- Means Difference
- Multinomial Distribution
- Negative Binomial Distribution
- Normal Distribution
- Odd and Even Permutation
- One Proportion Z Test
- Outlier Function
- Permutation
- Permutation with Replacement
- Pie Chart
- Poisson Distribution
- Pooled Variance (r)
- Power Calculator
- Probability
- Probability Additive Theorem
- Probability Multiplecative Theorem
- Probability Bayes Theorem
- Probability Density Function
- Process Capability (Cp) & Process Performance (Pp)
- Process Sigma
- Quadratic Regression Equation
- Qualitative Data Vs Quantitative Data
- Quartile Deviation
- Range Rule of Thumb
- Rayleigh Distribution
- Regression Intercept Confidence Interval
- Relative Standard Deviation
- Reliability Coefficient
- Required Sample Size
- Residual analysis
- Residual sum of squares
- Root Mean Square
- Sample planning
- Sampling methods
- Scatterplots
- Shannon Wiener Diversity Index
- Signal to Noise Ratio
- Simple random sampling
- Skewness
- Standard Deviation
- Standard Error ( SE )
- Standard normal table
- Statistical Significance
- Statistics Formulas
- Statistics Notation
- Stem and Leaf Plot
- Stratified sampling
- Student T Test
- Sum of Square
- T-Distribution Table
- Ti 83 Exponential Regression
- Transformations
- Trimmed Mean
- Type I & II Error
- Variance
- Venn Diagram
- Weak Law of Large Numbers
- Z table
- Statistics Useful Resources
- Statistics - Discussion
Statistics - Student T Test
T-test is small sample test. It was developed by William Gosset in 1908. He published this test under the pen name of "Student". Therefore, it is known as Student's t-test. For applying t-test, the value of t-statistic is computed. For this, the following formula is used:
Formula
${t} = \frac{Deviation\ from\ the\ population\ parameter}{Standard\ Error\ of\ the\ sample\ statistic}$
Where −
${t}$ = Test of Hypothesis.
Test of Hypothesis about population
Formula
${t} ={\bar X - \frac{\mu}{S}.\sqrt{n}} , \\[7pt] \, where\ {S} = \sqrt{\frac{\sum{(X-\bar X)}^2}{n-1}}$
Example
Problem Statement:
An irregular sample of 9 qualities from an ordinary populace demonstrated a mean of 41.5 inches and the entirety of square of deviation from this mean equivalent to 72 inches. Show whether the supposition of mean of 44.5 inches in the populace is reasonable.(For ${v}={8},\ {t_.05}={2.776}$)
Solution:
${\bar x = 45.5}, {\mu = 44.5}, {n=9}, {\sum{(X-\bar X)}^2 = 72} $
Let us take the null hypothesis that the population mean is 44.5.
$ i.e. {H_0: \mu = 44.5}\ and\ {H_1: \mu \ne 44.5} , \\[7pt] \ {S} = \sqrt{\frac{\sum{(X-\bar X)}^2}{n-1}}, \\[7pt] \ = \sqrt{\frac{72}{9-1}} = \sqrt{\frac{72}{8}} = \sqrt{9} = {3}$
Applying t-test:
$ {|t|} = {\bar X - \frac{\mu}{S}.\sqrt{n}} , \\[7pt] \ {|t|} = \frac{|41.5 - 44.5|}{3} \times \sqrt {9}, \\[7pt] \ = {3}$
Degrees of freedom = $ {v = n-1 = 9-1 = 8 }$. For ${v = 8, t_{0.05}}$ for two tailed test = ${2.306}$. Since, the calculated value of $ {|t|}$ > the table value of $ {t}$, we reject the null hypothesis. We conclude that the population mean is not equal to 44.5.
To Continue Learning Please Login
Login with Google